Ionic Conduction and Molecular Structure of Molten FeCl₃

Z. Akdeniz and M. P. Tosi^a

Physics Department, University of Istanbul, Istanbul, Turkey

a Istituto Nazionale di Fisica della Materia and Classe di Scienze, Scuola Normale Superiore, I-56126 Pisa, Italy

Z. Naturforsch. 53a, 960-962 (1998); received November 18, 1998

Former experiments on molten FeCl₃ have shown that, as for AlCl₃, melting is accompanied by a transition from sixfold to essentially fourfold coordination. However, in contrast to AlCl₃, the FeCl₃ melt near freezing has an appreciable ionic conductivity. We propose a model for the structure of FeCl₃ melt as consisting of closely packed Fe₂Cl₆ bitetrahedral molecules in equilibrium with $(Fe_2Cl_5)^+$ and $(Fe_2Cl_7)^-$ ionised species.

Key words: Melting; Liquid Structure; Molecular Liquids

Reprint requests to Prof. M. P. Tosi. Fax: 39-050-563513